Clase 06

Consideremos un conjunto $A \subseteq \mathbb{R}^n$. En esta clase estudiaremos una clasificación de puntos en \mathbb{R}^n , respecto al conjunto A, que, en general, no tiene que ver con la pertenencia al conjunto A.

Topología de \mathbb{R}^n : puntos de acumulación y puntos aislados

Comenzamos esta sesión introduciendo algo de terminología y de notación: Dado $\overline{x} \in \mathbb{R}^n$ y r > 0, al conjunto $B_r(\overline{x}) \setminus \{\overline{x}\}$ lo denotamos por $\dot{B}_r(\overline{x})$ y lo llamamos **la bola** "agujerada" con centro en \overline{x} y radio r > 0.

Definición 1 Sean $A \subseteq \mathbb{R}^n$ y $\overline{x} \in \mathbb{R}^n$. Diremos que:

(1) \overline{x} es un **punto de acumulación** de A si para todo radio r > 0 se tiene que $\dot{B}_r(\overline{x}) \cap A \neq \emptyset$. Al conjunto de todos los puntos de acumulación de A lo llamamos **el derivado** de A y lo denotaremos por A', es decir

$$A' = \{ \overline{x} \in \mathbb{R}^n \mid \overline{x} \text{ es punto de acumulación de } A \}$$

(2) \overline{x} es un **punto aislado** de A si $\overline{x} \in A$, pero no es un punto de acumulación de A, es decir, si existe r > 0 tal que $\dot{B}_r(\overline{x}) \cap A = \emptyset$.

Podemos notar que los puntos aislados, por definición, siempre pertenecen al conjunto en cuestión, mientras que los puntos de acumulación de un conjunto pueden o no pertenecer al conjunto, como lo muestra el siguiente ejemplo.

Ejemplo 2 Sea $A = B_1(0,0) \cup \{(2,2)\} \subseteq \mathbb{R}^2$. Exhiba:

- (1) Un punto de acumulación de A que pertenezca a A.
- (2) Un punto de acumulación de A que no pertenezca a A.
- (3) Un punto aislado de A.

Solución.

(1) $(0,0) \in \mathbb{R}^2$ es un punto de acumulación de A que pertenece a A : Sean r>0 y $0 < x < \min\{1,r\}$. Note que

$$0 < \|(0,0) - (x,0)\| < r,$$

por lo que $(x,0) \in \dot{B}_r(0,0) \cap \dot{B}_1(0,0) \subseteq \dot{B}_r(0,0) \cap A$. De aquí que $\dot{B}_r(0,0) \cap A \neq \emptyset$, para cualquier r > 0, vea figura 1.

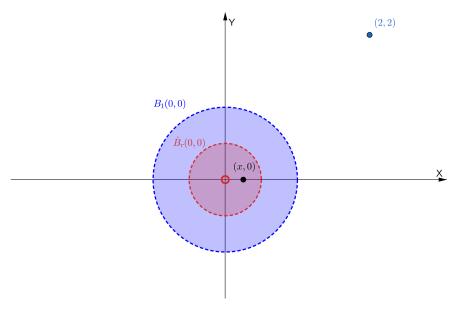


Figura 1: Para cualquier r > 0 exhibimos un punto $(x,0) \in \dot{B}_r(0,0) \cap A$, por lo que $\dot{B}_r(0,0) \cap A \neq \emptyset$.

(2) Afirmamos que (-1,0) es un punto de acumulación de A que no pertenece a A: Sean r>0 y $0 < x < \min\{1,r\}$. Se tiene que

$$0 < \|(-1,0) - (-1+x,0)\| = \|(-x,0)\| < r,$$

de donde $(-1 + x, 0) \in \dot{B}_r(-1, 0)$. Por otro lado,

$$||(0,0) - (-1+x,0)|| = |1-x| < 1,$$

de donde $(-1+x,0) \in B_1(0,0) \subseteq A$. Así que, $(-1+x,0) \in \dot{B}_r(-1,0) \cap A$. Con lo que (-1+x,0) es un punto de acumulación de A. Finalmente, $\|(-1,0)-(0,0)\|=1$ y claramente $(-1,0) \neq (2,2)$, por lo que $(-1,0) \notin A$, vea figura 2.

(3) $(2,2) \in A$ es punto aislado de A: Sean r=1/2 y $(x,y) \in \dot{B}_r(2,2)$. Entonces

$$\|(2,2)\| - \|(x,y)\| \le \|(2,2) - (x,y)\| < r = \frac{1}{2},$$

de donde $\sqrt{8} - \frac{1}{2} < \|(x,y)\|$, es decir, $1 < \|(x,y)\|$. Así, $(x,y) \notin B_1(0,0)$. Y como $(x,y) \in \dot{B}_r(2,2)$, en particular $(x,y) \neq (2,2)$. Así, $\dot{B}_r(2,2) \cap A = \emptyset$, esto es, (2,2) es un punto aislado de A, vea figura 3.

Note lo siguiente, respecto a la solución del ejemplo anterior:

- En el primer inciso, el punto (0,0) se puede reemplazar por cualquier punto interior de A, pues en realidad lo que utilizamos fue que la bola $B_1(0,0) \subseteq A$.
- ullet En el segundo inciso consideramos un punto de la frontera de A.

Esto no es un hecho especial que cumpla el conjunto A del ejemplo anterior, de hecho, ocurre en general, como lo afirma la siguiente proposición.

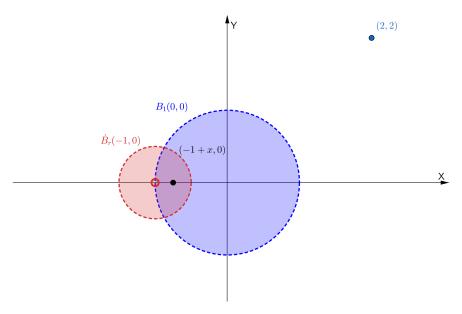


Figura 2: Para cualquier r>0 exhibimos un punto $(-1+x,0)\in \dot{B}_r(-1,0)\cap A$, por lo que $\dot{B}_r(-1,0)\cap A\neq\varnothing$.

Proposición 3 Para cualquier conjunto $A \subseteq \mathbb{R}^n$ se tiene que

$$int(A) \subseteq A' \subseteq int(A) \cup Fr(A)$$
.

Demostración. Sea $\overline{x} = (x_1, x_2, \dots, x_n) \in \text{int}(A)$ y r > 0. Como, $\overline{x} \in \text{int}(A)$, existe $r_0 > 0$ tal que $B_{r_0}(\overline{x}) \subseteq A$. Luego, si hacemos $r_1 = \min\{r, r_0\}$ y $\overline{x}_0 = \left(x_1 + \frac{r_1}{2}, x_2, \dots, x_n\right)$, entonces $\overline{x} \neq \overline{x}_0$ y además

$$\|\overline{x} - \overline{x}_0\| = \|(r_1/2, 0, \dots, 0)\| = \frac{r_1}{2} < r_1.$$

Así, $\overline{x}_0 \in \dot{B}_{r_1}(\overline{x})$.

Por otro lado, note que $\dot{B}_{r_1}(\overline{x}) \subseteq \dot{B}_{r_0}(\overline{x})$, pues $r_1 \leq r_0$, y como $B_{r_0}(\overline{x}) \subseteq A$ se sigue que $\overline{x}_0 \in \dot{B}_{r_1}(\overline{x}) \subseteq A$. Por lo tanto $\dot{B}_{r_1}(\overline{x}) \cap A \neq \emptyset$, pero $\dot{B}_{r_1}(\overline{x}) \subseteq \dot{B}_{r}(\overline{x})$, pues $r_1 \leq r$, por lo que $\dot{B}_{r}(\overline{x}) \cap A \neq \emptyset$ y de aquí que $\overline{x} \in A'$.

Ahora supongamos que $\overline{x} \in A'$. Recordemos que $\mathbb{R}^n = \operatorname{int}(A) \cup \operatorname{Fr}(A) \cup \operatorname{ext}(A)$ y que $\operatorname{ext}(A) = \operatorname{int}(A^c) \subseteq A^c$. Así, si $\overline{x} \in \operatorname{ext}(A)$, entonces existe r > 0 tal que $B_r(\overline{x}) \subseteq A^c$, de donde $\dot{B}_r(\overline{x}) \subseteq A^c$ y finalmente $\dot{B}_r(\overline{x}) \cap A = \emptyset$, lo cual contradice el hecho de que $\overline{x} \in A'$. Por lo tanto, $\overline{x} \in \mathbb{R}^n \setminus \operatorname{ext}(A)$, es decir, $\overline{x} \operatorname{int}(A) \cup \operatorname{Fr}(A)$.

Proposición 4 Sean $A \subseteq \mathbb{R}^n$ y $\overline{x} \in \mathbb{R}^n$. Se tiene que \overline{x} es un punto de acumulación de A si y sólo si para cualquier r > 0 el conjunto $B_r(\overline{x}) \cap A$ es un conjunto infinito.

Demostración. \Rightarrow] Supongamos que \overline{x} es punto de acumulación de A, pero que existe r>0 tal que $B_r(\overline{x})\cap A$ es un conjunto finito. Note que también $\dot{B}_r(\overline{x})\cap A$ es un conjunto finito. Ahora, si $\dot{B}_r(\overline{x})\cap A\neq\emptyset$, entonces \overline{x} no es punto de acumulación de A. Supongamos entonces que $\dot{B}_r(\overline{x})\cap A=\{\overline{x}_1,\ldots,\overline{x}_k\}$ para algunos $\overline{x}_1,\ldots,\overline{x}_k\in\mathbb{R}^n$ distintos y $k\in\mathbb{N}$. Luego, si consideremos $0< r_0<\min\{d(\overline{x},\overline{x}_i)\mid i\in\{1,\ldots,k\}\}$, entonces $\dot{B}_{r_0}(\overline{x})\cap A=\emptyset$, de donde, una vez más, \overline{x} no es punto de acumulación de A. Así, debe suceder que para cualquier r>0 $B_r(\overline{x})\cap A$ es un conjunto infinito.



Figura 3: Para r = 1/2 vimos que $\dot{B}_r(2,2) \cap A = \emptyset$.

 \Leftarrow] Supongamos que para cualquier r > 0 el conjunto $B_r(\overline{x}) \cap A$ es un conjunto infinito. Se sigue claramente que $\dot{B}_r(\overline{x}) \cap A$ es también un conjunto infinito, en particular $\dot{B}_r(\overline{x}) \cap A \neq \emptyset$. Por lo tanto, \overline{x} es un punto de acumulación de A.

Note que el siguiente corolario es inmediato.

Corolario 5 Sea $A \subseteq \mathbb{R}^n$. Si $A' \neq \emptyset$, entonces A es un conjunto infinito.

Demostración. Sea $\overline{x} \in A'$. Por la proposición anterior, tenemos que, el conjunto $B_1(\overline{x}) \cap A$ es un conjunto infinito. Ahora, como $B_1(\overline{x}) \cap A \subseteq A$, entonces A es infinito.

Después de ver lo sencillo del corolario anterior podemos preguntarnos si el regreso vale, es decir, si A es un conjunto infinito, entonces $\xi A' \neq \emptyset$? ξ Ustedes qué creen? Les sugiero pensar en el conjunto $A = \{(m,0) \in \mathbb{R}^2 \mid m \in \mathbb{Z}\}.$