Clase 21

La sesión pasada vimos, entre otras cosas, lo siguiente:

Definición 1 Sean $A \subseteq \mathbb{R}^n$, $\overline{x}_0 \in A$ y $f: A \longrightarrow \mathbb{R}^m$. Diremos que f es continua en \overline{x}_0 si para cualquier $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $\overline{x} \in A$ que satisface que $\|\overline{x} - \overline{x}_0\| < \varepsilon$, entonces $\|f(\overline{x}) - f(\overline{x}_0)\| < \varepsilon$.

Que en términos de bolas, se enuncia así: f es continua en \overline{x}_0 si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $f(B_{\delta}(\overline{x}_0) \cap A) \subseteq B_{\varepsilon}(f(\overline{x}_0))$.

Proposición 2 Sean $A \subseteq \mathbb{R}^n$, $\overline{x}_0 \in A$ y $f : A \longrightarrow \mathbb{R}^m$. Se tiene que:

- (1) Si \overline{x}_0 es un punto aislado de A, entonces f es continua en \overline{x}_0
- (2) Si \overline{x}_0 es un punto de acumulación de A, se cumple que f es continua en \overline{x}_0 si y sólo si $\lim_{\overline{x} \to \overline{x}_0} f(\overline{x}) = f(\overline{x}_0)$.
- (3) La función f es continua en \overline{x}_0 si y sólo si para cualquier sucesión $\{\overline{x}_k\}$ contenida en A que converge a \overline{x}_0 se tiene que $\{f(\overline{x}_k)\}$ converge a $f(\overline{x}_0)$.

Proposición 3 Sean $A \subseteq \mathbb{R}^n$, $\overline{x}_0 \in A$ y $f = (f_1, \dots, f_m) : A \longrightarrow \mathbb{R}^m$ una función. Se tiene que, f es continua en \overline{x}_0 si y sólo si f_i es continua en \overline{x}_0 , para cada $i \in \{1, \dots, m\}$.

Proposición 4 Sean $A \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^m$, $\overline{x}_0 \in A$, $\overline{y}_0 = g(\overline{x}_0) \in D$ y $g: A \longrightarrow \mathbb{R}^m$ y $f: D \longrightarrow \mathbb{R}^k$ dos funciones. Si g es continua en \overline{x}_0 y f continua en \overline{y}_0 , entonces $f \circ g$ es continua en \overline{x}_0 .

En esta ocasi'on estudiaremos la relación que hay entre funciones continuas en un punto adecuado y funciones para las cuales existe el límite en un punto adecuado.

Funciones continuas ¿entran y salen de los límites?

Proposición 5 Sean $A \subseteq \mathbb{R}^n$, $\overline{x}_0 \in A$, $D \subseteq \mathbb{R}^m$, $\overline{l} \in D$ y $g: A \longrightarrow \mathbb{R}^m$ y $f: D \longrightarrow \mathbb{R}^k$ dos funciones tales que $\overline{x}_0 \in (g^{-1}(D))' \subseteq A$. Si $\lim_{\overline{x} \to \overline{x}_0} g(\overline{x}) = \overline{l}$ y f es continua en \overline{l} , entonces $f \circ g$ tiene límite en \overline{x}_0 . Más áun,

$$\lim_{\overline{x}\to\overline{x}_{0}}\left(f\circ g\right)\left(\overline{x}\right)=f\left(\lim_{\overline{x}\to\overline{x}_{0}}g(\overline{x})\right).$$

Demostración. Sea $\varepsilon > 0$. Como f es continua en \bar{l} , existe $\delta' > 0$ tal que para cualquier $\bar{y} \in D$ que cumpla que $\|\bar{y} - \bar{l}\| < \delta'$ se tiene que

$$||f(\overline{y}) - f(\overline{l})|| < \varepsilon. \tag{1}$$

Por otro lado, como $\lim_{\overline{x}\to \overline{x}_0} g(\overline{x}) = \overline{l}$, para el número positivo δ' , existe $\delta > 0$ de tal manera que para cualquier $\overline{x} \in A$ que cumpla que $0 < ||\overline{x} - \overline{x}_0|| < \delta$ se tiene que

$$||g(\overline{x}) - \overline{l}|| < \delta'. \tag{2}$$

Ahora, si $\overline{x} \in Dom(f \circ g) = \{\overline{x} \in A \mid g(\overline{x}) \in D\}$ cumple que $0 < \|\overline{x} - \overline{x}_0\| < \delta$, por (2), se tiene que

$$||g(\overline{x}) - \overline{l}|| < \delta'.$$

Luego, por (1), se sigue que

$$||f(g(\overline{x})) - f(\overline{l})|| < \varepsilon.$$

Por lo tanto, $f \circ g$ tiene límite en \overline{x}_0 , de hecho,

$$\lim_{\overline{x}\to\overline{x}_{0}}\left(f\circ g\right)\left(\overline{x}\right)=f\left(\overline{l}\right),$$

es decir,

$$\lim_{\overline{x}\to\overline{x}_{0}}\left(f\circ g\right)\left(\overline{x}\right)=f\left(\lim_{\overline{x}\to\overline{x}_{0}}g(\overline{x})\right).$$

Ejemplo 6 Considere la función $h(x,y) = e^{\frac{x^2y}{x^2+y^2}}$. Encuentre, si existe,

$$\lim_{(x,y)\to(0,0)} e^{\frac{x^2y}{x^2+y^2}}.$$

Solución. Sean f y g las funciones dadas por $f(t) = e^t$ y $g(x,y) = \frac{x^2y}{x^2 + y^2}$. Note que $h = f \circ g$. Ahora, como f es continua en todo \mathbb{R} , para ver que el límite requerido existe, por la Proposición 5, bastaría ver que g tiene límite en (0,0). Para ello, observe que

$$\left| \frac{x^2 y}{x^2 + y^2} \right| = \frac{|x|^2 |y|}{\|(x, y)\|^2} \le \frac{\|(x, y)\|^3}{\|(x, y)\|^2} = \|(x, y)\|,$$

para todo $(x,y) \neq (0,0)$. De aquí que $\lim_{(x,y)\to(0,0)} g(x,y) = 0$. Concluimos, de la Proposción 5, que

$$\lim_{(x,y)\to(0,0)} e^{\frac{x^2y}{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \left(f\circ g\right)(x,y) = f\left(\lim_{(x,y)\to(0,0)} g(x,y)\right) = e^{\left(\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}\right)} = e^0 = 1.$$

¿Y qué ocurre si g es la función continua y para f solo existe el límite?

Proposición 7 Sean $A \subseteq \mathbb{R}^n$, $\overline{x}_0 \in A$, $D \subseteq \mathbb{R}^m$, $\overline{l} \in \mathbb{R}^k$ $y \ g : A \longrightarrow \mathbb{R}^m$ $y \ f : D \longrightarrow \mathbb{R}^k$ dos funciones tales que $\overline{y}_0 = g(\overline{x}_0) \in D'$. Si g es continua en \overline{x}_0 , $\lim_{\overline{y} \to \overline{y}_0} f(\overline{y}) = \overline{l}$ y existe r > 0 tal que $g(\overline{x}) \neq \overline{y}_0$ para todo $\overline{x} \in \dot{B}_r(\overline{x}_0)$, entonces $f \circ g$ tiene límite en \overline{x}_0 . Más áun,

$$\lim_{\overline{x}\to\overline{x}_{0}}\left(f\circ g\right)\left(\overline{x}\right)=\overline{l}.$$

Demostración. Sea $\varepsilon>0$. Como $\lim_{\overline{y}\to\overline{y}_0}f(\overline{y})=\overline{l}$, existe $\delta'>0$ tal que para cualquier $\overline{y}\in D$ que cumpla que $0<\|\overline{y}-\overline{y}_0\|<\delta'$ se tiene que

$$||f(\overline{y}) - \overline{l}|| < \varepsilon. \tag{3}$$

Por otro lado, como g es continua en \overline{x}_0 , para el número positivo δ' , existe $\delta'' > 0$ de tal manera que para cualquier $\overline{x} \in A$ que cumpla que $\|\overline{x} - \overline{x}_0\| < \delta''$ se tiene que

$$||g(\overline{x}) - g(\overline{x}_0)|| < \delta'. \tag{4}$$

Sea $\delta = \min\{\delta'', r\}$, note que $\delta > 0$. Así, si $\overline{x} \in Dom(f \circ g) = \{\overline{x} \in A \mid g(\overline{x}) \in D\}$ cumple que $0 < \|\overline{x} - \overline{x}_0\| < \delta$, se tiene, por hipótesis, que $g(\overline{x}) \neq \overline{y}_0$ y, por (4), que $\|g(\overline{x}) - g(\overline{x}_0)\| < \delta'$. De aquí que

$$0 < \|g(\overline{x}) - \overline{y}_0\| < \delta'. \tag{5}$$

Finalmente, de (3), concluimos que

$$||f(g(\overline{x})) - \overline{l}|| < \varepsilon.$$

Así,

$$\lim_{\overline{x}\to\overline{x}_{0}}\left(f\circ g\right)\left(\overline{x}\right)=\overline{l}.$$

Ejemplo 8 Considera la función $f(x,y) = \frac{x^2y}{x^4 + y^2}$. Indique si existe $\lim_{(x,y)\to(0,0)} f(x,y)$.

Solución. Consideremos las funciones g_1 y g_2 dadas por

$$g_1(t) = (t, mt)$$
 y $g_2(t) = (t, t^2)$.

Note que $g_1(0) = (0,0)$, $g_2(0) = (0,0)$ y que g_1 y g_2 son continuas en 0, además, son inyectivas en todo \mathbb{R} .

Ahora, supongamos que $\lim_{(x,y)\to(0,0)} f(x,y)$ existe, digamos que es $l\in\mathbb{R}$. Entonces, por la Proposición 7, se tiene que

$$l = \lim_{t \to 0} (f \circ g_1)(t) = \lim_{t \to 0} \frac{mt}{t^2 + m^2} = 0.$$

Así que l = 0. Pero, por otro lado, también por la Proposición 7, se tiene que

$$l = \lim_{t \to 0} (f \circ g_2)(t) = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}.$$

Por lo que, l=1/2, lo cual es una contradicción al hecho de que el límite de una función es único. Concluimos entonces que $\lim_{(x,y)\to(0,0)} f(x,y)$ no existe. \blacksquare

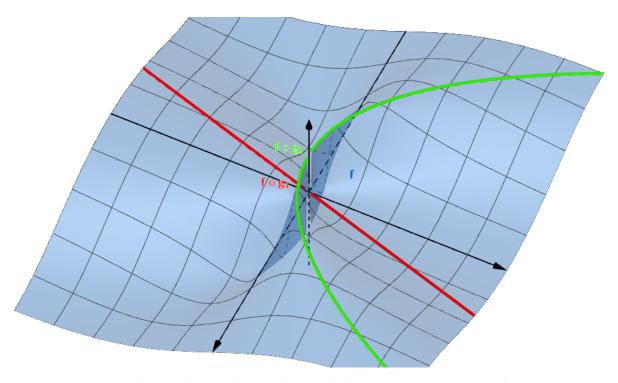


Figura 1: La manera de proceder en el Ejemplo 8 suele denominarse $aproximaci\'on\ por\ trayectorias.$