Clase 33

Definición 1 Sean $U \subseteq \mathbb{R}^n$, $\overline{x}_0 \in U$ y $f: U \longrightarrow \mathbb{R}$ una función. Diremos que f es derivable en \overline{x}_0 si existe una función lineal $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ tal que

$$\lim_{\overline{x} \to \overline{x}_0} \frac{f(\overline{x}) - [L(\overline{x} - \overline{x}_0) + f(\overline{x}_0)]}{\|\overline{x} - \overline{x}_0\|} = 0.$$

Dado que la función L es única con esta propiedad (lo demostramos) la llamaremos **la derivada** de f en \overline{x}_0 y la denotaremos por $Df(\overline{x}_0)$.

Proposición 2 Sean $U \subseteq \mathbb{R}^n$, $\overline{x}_0 \in U$, $f: U \longrightarrow \mathbb{R}$ una función $y \overline{u} \in \mathbb{R}^n$ de norma 1. Si f es derivable en \overline{x}_0 , entonces existe la derivada direccional de f en \overline{x}_0 en la dirección de \overline{u} y

$$D_{\overline{u}}f(\overline{x}_0) = Df(\overline{x}_0)(\overline{u}).$$

Corolario 3 Sean $U \subseteq \mathbb{R}^n$, $\overline{x}_0 \in U$, $f: U \longrightarrow \mathbb{R}$ una función $y \{\overline{e}_1, ..., \overline{e}_n\}$ una base ortonormal de \mathbb{R}^n . Si f es derivable en \overline{x}_0 , entonces existe $\frac{\partial f}{\partial x_i}(\overline{x}_0)$ para cada $i \in \{1, ..., n\}$, donde $(x_1, ...x_n)$ son las variables determinadas por la base mencionada, y

$$\frac{\partial f}{\partial x_i}(\overline{x}_0) = Df(\overline{x}_0)(\overline{e}_i).$$

En esta ocasión mostraremos cómo utilizar las derivadas parciales, si existen, para hallar la derivada de una función de \mathbb{R}^n en \mathbb{R} en un punto.

Cómo hallar la derivada usando las derivadas parciales

Antes de comenzar a estudiar más sobre la relación que puede existir entre las derivadas parciales y la derivada debemos hacer unas cuantas observaciones/recordatorios:

Consideremos una función lineal $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ y una base ortonormal $\beta = \{\overline{v}_1, ..., \overline{v}_n\}$ de \mathbb{R}^n . Si $\overline{x} \in \mathbb{R}^n$ tiene coordenadas $(x_1, ..., x_n)$ en la base β , es decir, $\overline{x} = x_1 \overline{v}_1 + \cdots + x_n \overline{v}_n$, entonces

$$L(\overline{x}) = L(x_1\overline{v}_1 + \dots + x_n\overline{v}_n)$$

= $x_1L(\overline{v}_1) + \dots + x_nL(\overline{v}_n)$.

Así, para conocer el valor de L en \overline{x} es suficiente conocer las coordenadas de \overline{x} en la base β y los valores de L en los elementos de β . Ahora, si consideramos la matriz, de $1 \times n$,

$$M_{\beta} = [a_{11} \cdots a_{1n}],$$

donde $a_{1i} = L(\overline{v}_i)$, decimos que la matriz M_{β} es la matriz asociada a la función lineal L en la base β . Esta matriz puede ser usada para calcular $L(\overline{x})$ como sigue:

$$L(\overline{x}) = L(x_1, ..., x_n)$$

$$= [a_{11} \cdot \cdot \cdot \cdot a_{1n}] \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$$

$$= M_{\beta} \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{bmatrix}.$$

Otra manera de calcular $L(\overline{x})$ es representar a la función lineal L con el vector $(L(\overline{v}_1), ..., L(\overline{v}_n))$ y usar el producto punto como sigue

$$\begin{array}{rcl} L(\overline{x}) & = & L(x_1,...,x_n) \\ & = & (L\overline{v}_1,...,L(\overline{v}_n)\cdot(x_1,...,x_n). \end{array}$$

Observación 4 Sean $U \subseteq \mathbb{R}^n$, $\overline{x}_0 \in U$ y $\beta = \{\overline{e}_1, ..., \overline{e}_n\}$ una base ortonormal de \mathbb{R}^n . Si $f: U \longrightarrow \mathbb{R}$ es una función (expresada en términos de la base β) derivable en \overline{x}_0 , sabemos que

$$Df(\overline{x}_0)(\overline{e}_i) = \frac{\partial f}{\partial x_i}(\overline{x}_0),$$

para cada $i \in \{1, ..., n\}$. De esta manera, la función lineal $Df(\overline{x}_0)$ debe tener asociada la matriz

$$\left[\frac{\partial f}{\partial x_1}(\overline{x}_0) \cdots \frac{\partial f}{\partial x_n}(\overline{x}_0)\right],\,$$

o bien, debe estar representada por el vector

$$\left(\frac{\partial f}{\partial x_1}(\overline{x}_0), ..., \frac{\partial f}{\partial x_n}(\overline{x}_0)\right).$$

Cuidado: En la observación anterior usamos que f es derivable en \overline{x}_0 para hallar las representaciones de $Df(\overline{x}_0)$. Pero, podemos apoyarnos, con cuidado, en esta observación para proponer una función lineal que cumpla con la Definición 1, de la siguiente manera:

Si f es una función para la cual existen todas sus derivadas parciales en el punto \overline{x}_0 y queremos demostrar que f es derivable en \overline{x}_0 , entonces la función lineal representada por la matriz

$$\left[\frac{\partial f}{\partial x_1}(\overline{x}_0) \cdots \frac{\partial f}{\partial x_n}(\overline{x}_0)\right],\,$$

es la mejor candidata para ser la derivada de f en \overline{x}_0 .

Ejemplo 5 Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada en términos de las coordenadas de la base canónica por la siguiente regla de correspondencia

$$f(x,y) = xy$$
.

Demuestra que f es derivable en cualquier punto $\overline{x}_0 = (x_0, y_0) \in \mathbb{R}^2$.

Solución. Es fácil ver que existen todas las derivadas parciales de f y que

$$\frac{\partial f}{\partial x}(\overline{x}_0) = y_0 \text{ y } \frac{\partial f}{\partial y}(\overline{x}_0) = x_0.$$

Así que la función lineal $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ representada por la matriz $[y_0 \quad x_0]$ es nuestra candidata para ser la derivada de f en \overline{x}_0 . Ahora, notemos que

$$L(x,y) = \begin{bmatrix} y_0 & x_0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= xy_0 + x_0y.$$

Luego, $L(\overline{x} - \overline{x}_0) = L(x - x_0, y - y_0) = (x - x_0)y_0 + x_0(y - y_0)$ y de aquí que

$$\left| \frac{f(\overline{x}) - [L(\overline{x} - \overline{x}_0) + f(\overline{x}_0)]}{\|\overline{x} - \overline{x}_0\|} \right| = \left| \frac{xy - [(x - x_0)y_0 + x_0(y - y_0) + x_0y_0]}{\|(x - x_0, y - y_0)\|} \right|$$

$$= \frac{|(x - x_0)(y - y_0)|}{\|(x - x_0, y - y_0)\|^2}$$

$$\leq \frac{\|(x - x_0, y - y_0)\|^2}{\|(x - x_0, y - y_0)\|}$$

$$= \|(x - x_0, y - y_0)\|$$

Se sigue que $\lim_{\overline{x}\to\overline{x}_0} \frac{f(\overline{x}) - [L(\overline{x}-\overline{x}_0) + f(\overline{x}_0)]}{\|\overline{x}-\overline{x}_0\|} = 0$, es decir, f es derivable en \overline{x}_0 y $Df(x_0,y_0)$: $\mathbb{R}^2 \longrightarrow \mathbb{R}$ está dada por $Df(x_0,y_0)(x,y) = xy_0 + x_0y$.

Ejemplo 6 Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada en términos de las coordenadas de la base canónica por la siquiente regla de correspondencia

$$f(x,y) = x^2 + y^2 - 1.$$

Muestre que f es derivable en cualquier punto $(x_0, y_0) \in \mathbb{R}^2$.

Solución. Note que $\frac{\partial f}{\partial x}(x,y)$ y $\frac{\partial f}{\partial y}(x,y)$ existen para todo punto en \mathbb{R}^2 y que $\frac{\partial f}{\partial x}(x,y) = 2x$ y $\frac{\partial f}{\partial y}(x,y) = 2y$.

Ahora, como debemos demostrar que f es derivable en (x_0, y_0) evaluamos en (x_0, y_0) ,

$$\frac{\partial f}{\partial x}(x_0, y_0) = 2x_0 \quad \text{y} \quad \frac{\partial f}{\partial y}(x_0, y_0) = 2y_0.$$

Calculemos la función lineal $L: \mathbb{R}^2 \longrightarrow \mathbb{R}$ que propondremos como la derivada de f.

$$L(\overline{x}) = L(x, y)$$

$$= \left[\frac{\partial f}{\partial x}(x_0, y_0) \frac{\partial f}{\partial y}(x_0, y_0)\right] \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= [2x_0 \ 2y_0] \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= 2x_0x + 2y_0y.$$

Ahora,

$$f(\overline{x}) - [L(\overline{x} - \overline{x}_0) + f(\overline{x}_0)] = x^2 + y^2 - 1 - [2x_0(x - x_0) + 2y_0(y - y_0) + x_0^2 + y_0^2 - 1]$$

$$= (x^2 - 2x_0x + x_0^2) + (y^2 - 2yy_0 + y_0^2)$$

$$= (x - x_0)^2 + (y - y_0)^2$$

$$= ||\overline{x} - \overline{x}_0||^2.$$

De donde,

$$\lim_{\overline{x} \to \overline{x}_0} \frac{f(\overline{x}) - [L(\overline{x} - \overline{x}_0) + f(\overline{x}_0)]}{\|\overline{x} - \overline{x}_0\|} = \lim_{\overline{x} \to \overline{x}_0} \frac{\|\overline{x} - \overline{x}_0\|^2}{\|\overline{x} - \overline{x}_0\|} = \lim_{\overline{x} \to \overline{x}_0} \|\overline{x} - \overline{x}_0\| = 0.$$

Por lo tanto f es derivable en $\overline{x}_0 = (x_0, y_0)$ y $Df(\overline{x}_0) : \mathbb{R}^2 \to \mathbb{R}$ está dada en términos de la base canónica por $Df(\overline{x}_0)(x, y) = 2x_0x + 2y_0y$.

En Cálculo I asociamos la idea de recta tangente con la de derivada y al menos para funciones de \mathbb{R}^2 en \mathbb{R} podemos rescatar esta idea. Aprovecharemos el ejemplo anterior para "visualizar" esto.

En el ejemplo anterior mostramos que f es derivable en cualquier punto y de hecho obtuvimos la derivada para cada punto, entonces si consideramos $\overline{x}_0 = (0,0) \in \mathbb{R}^2$ tenemos que $Df(\overline{x}_0)$: $\mathbb{R}^2 \longrightarrow \mathbb{R}$ está dada, en términos de la base canónica, por la siguiente regla de correspondencia, $Df(\overline{x}_0)(x,y) = 2(0)x + 2(0)y = 0$. Note que la gráfica de $Df(\overline{x}_0)$ es un plano en \mathbb{R}^3 que pasa por el origen, de hecho es el plano XY. Ahora, si trasladamos dicho plano al punto $(x_0, y_0, f(x_0, y_0)) = (0,0,-1)$ obtenemos el plano dado por la ecuación z = -1, que de hecho es tangente a la gráfica de f en el punto (0,0,f(0,0)), vea figura 1.

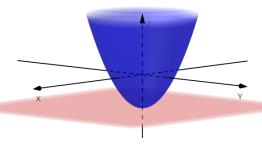


Figura 1

En general, note que la gráfica de la función lineal $Df(\overline{x}_0)(x,y)=2x_0x+2y_0y$ es un plano que pasa por el origen. Luego, si trasladamos dicho plano al punto $(x_0,y_0,x_0^2+y_0^2-1)$ obtenemos un plano tangente a la gráfica de la función f en el punto $(x_0,y_0,x_0^2+y_0^2-1)$, vea figura 2, y que tiene por ecuación

$$z = 2x_0(x - x_0) + 2y_0(y - y_0) + x_0^2 + y_0^2 - 1.$$

Por lo anterior damos la siguiente definición.

Definición 7 Sean $U \subseteq \mathbb{R}^2$, $\overline{x}_0 = (x_0, y_0) \in U$ y $f: U \longrightarrow \mathbb{R}$ una función derivable en \overline{x}_0 . Diremos que el plano que tiene como ecuación

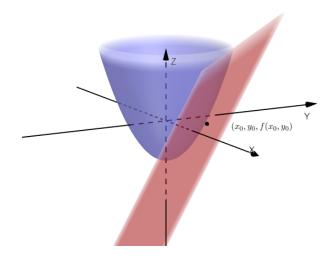


Figura 2

$$z = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

es el plano tangente a la gráfica de f en el punto $(x_0, y_0, f(x_0))$